Доктор физико-математических наук Александр Соловьёв, Кирилл Дегтярёв (Научно-исследовательская лаборатория возобновляемых источников энергии географического факультета МГУ им. М. В. Ломоносова).

Фото Игоря Константинова.

Промышленная ветровая электростанция, построенная в 1931 году в Крыму, спроектирована в ЦАГИ и была на тот момент крупнейшей в мире - её мощность 100 кВт. Во время Великой Отечественной войны она была разрушена.

Темпы роста установленных мощностей ветроэлектростанций.

Рост установленных мощностей ветроэлектростанций по ключевым регионам. Источник: Global Wind Energy Council.

Высота некоторых ветрогенераторов достигает сотен метров. На фото: установка одной из турбин ветропарка Медвежья Гора (Bear Moun-tain) в провинции Британская Колумбия в Канаде. Одна такая ветроустановка обеспечивает электроэнергией 300 домохозяйств.

Оффшорный ветропарк в Дании близ Копенгагена. Размещение ветрогенераторов в море - неплохое решение проблемы нехватки площадей для строительства мощных ветроэлектростанций. Кроме того, благодаря морскому бризу ветряки работают 97% времени.

Уровень шума от различных источников. Источник: Ермоленко Б. В., Ермоленко Г. В., Рыженков М. А. Экологические аспекты ветроэнергетики // Теплоэнергетика, 2011, № 11.

Годовая оценка смертности птиц в Европе. Источник: European Wind Energy Association, 2010.

Ветер относят к возобновляемым, или альтернативным, источникам энергии. Его преимущества очевидны: ветер дует всегда и везде, его не надо «добывать». Общие запасы энергии ветра в мире оценены в 170 трлн кВт·ч, или 170 тыс. тераватт-часов (ТВт·ч), в год, что в восемь раз превышает нынешнее мировое потребление электроэнергии. То есть теоретически всё электроснабжение в мире можно было бы обеспечить исключительно за счёт энергии ветра. А если вспомнить, что её использование не загрязняет атмосферу, гидросферу и почву, то этот источник энергии и вовсе кажется идеальным. Но, увы, всё имеет оборотную сторону, и ветроэнергетика не исключение.

Использование энергии ветра - давняя история: сколько лет ветряным мельницам и парусным судам? Да и ветроэлектростанции начали строить ещё в начале прошлого века. Следует отметить, что одним из лидеров в этой области в 1930-1950-е годы был Советский Союз. В далёком 1931 году в Крыму, около Балаклавы, была введена в эксплуатацию ветроэлектростанция, которая работала до 1941 года. Во время боёв за Севастополь она была полностью разрушена. Опорную конструкцию ветродвигателя (мачту) построили по проекту Владимира Григорьевича Шухова. Ветроагрегат с колесом диаметром 30 м и генератором в 100 кВт был на тот период самым мощным в мире. Ветроагрегаты в Дании и Германии того времени имели диаметр колеса до 24 м, а их мощность не превышала 50-70 кВт.

В 1950-1955 годах в СССР производилось 9000 ветроустановок в год. Во время освоения целины в Казахстане была построена первая многоагрегатная ветроэлектростанция, работавшая в паре с дизельным двигателем, общей мощностью 400 кВт, ставшая прообразом современных европейских ветропарков и систем «ветро-дизель». Интересный факт приводится в автобиографической трилогии чукотского писателя Юрия Рытхэу «Время таяния снегов». В его родном стойбище Улак электрическое освещение появилось в конце 1930-х годов именно благодаря ветродвигателю, который обеспечивал электроэнергией и соседнюю полярную станцию.

Тем не менее активное развитие ветро-энергетики в мире началось лишь в 70-е годы прошлого столетия. Предпосылками к нему стали обострившиеся экологические проблемы (загрязнение атмосферы из-за работы ТЭС, кислотные дожди и т.д.) в сочетании с ростом цен на нефть и желанием ослабить зависимость западных стран от поставок углеводородов из СССР и стран третьего мира. Нефтяной кризис 1973-1974 годов дал дополнительный стимул ветроэнергетике и вывел вопрос о её развитии на государственно-политический уровень.

Тем не менее отношение к ветроэнергетике было (и остаётся) неоднозначным, - наряду с энтузиазмом присутствовали скепсис и недовольство, в том числе, как ни странно, связанные с экологическими аспектами. Вот один из примеров того, что писала по этому поводу зарубежная пресса в 1994 году: «Возникают и неприятные парадоксальные ситуации, когда люди недовольны строительством ветровых станций и часто блокируют их именно из экологических соображений - группы станций создают шумовое и визуальное загрязнение местности».

Подобные претензии к ветроустановкам звучали, например, в Нидерландах, где ветростанции, по мнению общественности, нарушали традиционный облик территории, да и размещать тысячи турбин в стране с высокой плотностью населения, по мнению критиков, негде.

С тех пор общая установленная мощность ветроэлектростанций в мире выросла в 60-75 раз. Появились огромные конструкции, поднятые на высоту в сотни метров. Мощности отдельных ветрогенераторов достигают нескольких мегаватт, гигаваттные ветропарки сопоставимы с крупнейшими объектами «традиционной» энергетики - тепловой, атомной и гидроэнергетики.

В 2012 году установленная мощность ветроэлектростанций в мире достигла 282 ГВт, что превышает суммарную мощность всех электростанций России и сопоставимо с мощностью всех АЭС на планете. Однако дают они только около 2,4% всей мировой электроэнергии, хотя в отдельных европейских странах, например в Дании или Испании, их доля приближается к 20%. То есть ветроэнергетика так и не стала преобладающей в общей системе выработки электроэнергии в мире. Да и на все остальные возобновляемые нетрадиционные источники энергии, включая энергию приливов и отливов, солнца, геотермальную энергию, пришлось всего 3,7%.

После нескольких десятилетий роста, мощной информационной и финансовой поддержки возобновляемой энергетики картина могла бы быть и более впечатляющей. Ведь в Европе и США производители «зелёной» энергии поддерживаются на государственном уровне. В частности, в портфеле энергосбытовых компаний должна быть обязательная доля энергии возобновляемых источников - только в этом случае гарантируется сбыт. К тому же во многих странах для производителей возобновляемой энергии действуют налоговые льготы. Между тем после бурного роста числа ветровых генераторов энергии в последние полтора десятилетия отмечается его некоторое замедление: в 2011-2012 годах темпы ввода в эксплуатацию установленных мощностей ветроэнергостанций были самыми низкими за последние 16 лет.

Особенно это заметно в Европе. Возможно, подобное замедление связано с разразившимся экономическим кризисом, но вероятна и другая причина - территориальные «ресурсы» Старого Света близки к исчерпанию, то есть ветроэнергоустановки в Европе уже просто негде строить. По данным агентства Bloomberg New Energy Finance, в 2012 году инвестиции в возобновляемую энергетику в мире в целом сократились на 11%, при этом они продолжали расти в азиатских странах. Следует добавить, что 15 лет назад более половины всех ветроэнергетических мощностей мира приходилось на США, затем резко вырвалась вперёд Европа, и в последние годы лидерство захватил Китай.

Хорошо, да недёшево

Ветроэлектростанции явно отстают от АЭС и ГЭС по коэффициенту использования установленной мощности. Если для АЭС он составляет 84%, для ГЭС - 42%, то для ветроэлектростанций - лишь 20%, что обусловлено характером самого источника энергии: ветер дует с достаточной силой далеко не всегда. То есть ветроэлектростанции в 2-4 раза менее продуктивны, чем электростанции традиционных типов, и для получения такого же количества электроэнергии их надо построить в 2-4 раза больше. Это дополнительные площади и материалы, а значит, больший экологический ущерб (в чём бы он ни заключался) в пересчёте на киловатт произведённой электроэнергии.

По информации Российской ассоциации ветроиндустрии (РАВИ), металлоёмкость современного ветрогенератора мощностью 3 МВт достигает 350 тонн. Если ТЭС в 1 ГВт требует площади порядка нескольких гектаров, то под ветропарк такой же мощности приходится отводить уже тысячи гектаров. И хотя на территории ветропарка можно вести и другую хозяйственную деятельность и даже жить, в действие вступают отношения собственности - требуется выкуп либо аренда большого участка земли.

Стоимость строительства ветроэлектростанции порядка 1500-2000 долларов на 1 кВт установленной мощности, что сопоставимо с затратами на строительство АЭС и в несколько раз выше инвестиционных затрат на строительство ТЭС. Агрегаты высокой мощности - с большой высотой мачты и большим диаметром лопастей, работающие в условиях сильных ветров и морозов, нуждаются в повышенной надёжности, а значит, требуют дополнительных затрат на строительство и обслуживание.

Себестоимость 1 кВт электроэнергии, производимой на ветроэлектростанции, тоже в реальности не равна нулю. Европейский опыт показывает, что суммарные эксплуатационные издержки 0,6-1 евроцент на 1 кВт·ч, а для машин со сроком эксплуатации выше 10 лет издержки возрастают до 1,5-2 евроцента на 1 кВт·ч. Соответственно это 24-40 и 60-80 копеек на 1 кВт·ч. Для сравнения, затраты на выработку 1 кВт·ч на ГЭС и АЭС - порядка нескольких копеек, на ТЭС - при нынешнем уровне цен на углеводороды - около 1 руб./кВт·ч.

Так что о «возобновляемости» тех или иных источников энергии приходится говорить с большой долей условности. Ведь на создание энергетических объектов, использующих эти источники, приходится тратить невозобновляемые материалы (в частности, металлы), добыча и обработка которых далеко не всегда экологически безупречны.

Что касается развития крупномасштабной ветроэнергетики, то оно тормозится прежде всего из-за упомянутых выше высокой металлоёмкости, сложности конструкций ветроэнергоустановок, потребности в больших площадях, низкой продуктивности и недостаточной стабильности работы. Кроме того, под угрозой могут оказаться такие стимулы развития ветроэнергетики, как исчерпание запасов углеводородного сырья и антропогенное потепление климата. Есть много данных, что запасы углеводородов велики, а роль человека в глобальном изменении климата, да и само изменение климата - вопросы дискуссионные.

Тем не менее ветер, как и другие альтернативные источники возобновляемой энергии, остаётся относительно перспективным. Правда, по прогнозам специалистов, в ближайшие десятилетия «первую скрипку» в мировой альтернативной энергетике начнёт играть солнечная, а не ветряная энергия. Преимущества солнечной энергетики понятны - это в перспективе более компактные и менее материалоёмкие системы, а солнце - относительно стабильный и предсказуемый источник энергии.

Ветряками - по экологии?

Экологи предъявляют немало претензий к ветроэнергетике. Это создаваемые при работе лопастей шум, инфразвуковые колебания и вибрации, отрицательно действующие на людей, технику и животных. Ветряки не просто нарушают привычные, милые глазу пейзажи, огромные вращающиеся лопасти воздействуют на психику человека. В районе ветропарков перестают селиться животные и птицы. Есть риски, связанные с отрывом лопастей и другими авариями на крупных ветроэлектростанциях. Кроме того, при работе множества ветрогенераторов на больших площадях возможно локальное снижение силы и изменение конфигурации ветров. Дополнительную проблему создаёт необходимость утилизации лопастей, исчерпавших свой ресурс.

Какие из этих недостатков и рисков мнимые и какие реальные, подсказывает двадцатилетний опыт использования энергии ветра в густонаселённой Европе. Так, не подтверждаются опасения, связанные с инфразвуком и работой лопастей, - об этом говорят проведённые оценки уровня шума и смертности птиц, из которых видно, что шум на расстоянии 350 м от ветростанции лишь чуть превышает фоновый. А количество птиц, погибших от столкновения с ветряками, в три с половиной тысячи раз меньше, чем, например, от встречи с кошками.

Конечно, в подобных оценках есть нюанс: многое зависит от числа ветроэлектростанций. При существующем количестве ущерб действительно минимален, но что произойдёт, если ветроагрегатов станет значительно больше?

Кроме того, при сравнительной оценке количества гибнущих птиц надо учитывать, о каких видах идёт речь. Кошки охотятся на воробьиных, а при столкновениях с ветроэлектростанциями на достаточно больших высотах могут гибнуть более редкие и ценные виды пернатых. Не следует сбрасывать со счетов и нарушение миграционных маршрутов птиц.

Тем не менее суммарный экологический ущерб от ветроэнергетики существенно ниже по сравнению с «традиционными» способами генерации энергии. В Европе внешний негативный социально-экологический эффект на 1 кВт·ч произведённой электроэнергии оценён в 0,15 цента для ветроэнергетики, 1,1 цента - для газовых ТЭС и 2,5 цента - для угольных.

Исключение составляет проблема утилизации лопастей ветрогенераторов, выполненных из композитных материалов. Дело в том, что срок службы лопастей 20-25 лет и первые из построенных уже близки к выработке ресурса. Особо остро с этой проблемой придётся столкнуться уже в 2020 году, когда общая масса отработанных лопастей в мире составит 50 000 тонн, а к 2035 году вырастет до 200 000 тонн.

На данный момент используются два основных способа утилизации лопастей, сделанных из стеклопластика: механический и термический. Первый метод предполагает механическое измельчение волокон и гранул, составляющих композитный материал лопастей, которые затем используют в качестве сырья для производства низкосортной продукции. Однако в большинстве случаев выработавшие ресурс турбины подвергают термической обработке, то есть сжигают. Это явно «антиэкологичный» способ утилизации, который тем более абсурдно выглядит на фоне заявлений об «экологически чистой» ветроэнергетике. При этом зольность сжигаемой массы (доля негорючего неорганического остатка в общей массе материала) около 60% и образующаяся зола требует захоронения.

Специалисты РХТУ им. Д. И. Менделеева считают, что для переработки лопастей более перспективен пиролиз (нагревание без доступа кислорода при 500°С). Полученные вещества (пиролизат) можно использовать для производства пеностекла и стеклоблоков, а образующийся при пиролизе газ сжигать для получения электроэнергии.

Российские перспективы

В настоящее время суммарные установленные мощности ветроэнергоустановок в России не превышают нескольких десятков мегаватт, а доля ветроэнергетики в общем объёме производства электроэнергии ничтожна. В то же время реализуются несколько крупных проектов, прежде всего в степных районах юга страны и прибрежных зонах. Вероятно, в ближайшие годы ситуация с ветроэнергетикой может заметно измениться.

Большие пространства, сравнительно низкая плотность населения и хозяйственных объектов существенно снижают экологические риски работы ВЭС в России по сравнению с европейскими странами. Одновременно большие расстояния и слабо развитая транспортная инфраструктура затрудняют развитие ветроэнергетики и создают дополнительные трудности в обслуживании ветроагрегатов и ветростанций.

Другая, достаточно очевидная причина слабого развития ветроэнергетики в России - наличие больших запасов углеводородов, более дешёвого энергетического сырья. Как упоминалось выше, открытие и разработка крупных месторождений нефти и газа лишили СССР, который был когда-то одним из мировых лидеров в ветроэнергетике, стимулов развития в этой области. Тем не менее расхожее мнение, что нам не нужна альтернативная энергетика (и ветроэнергетика, в частности), не имеет под собой оснований. Нефтегазовое изобилие нашей страны не стоит преувеличивать, а нынешний уровень энерговооружённости недостаточен для полноценного социально-экономического развития, что требует поиска новых источников энергии. Российские потребители сталкиваются с дороговизной подключения к энергосетям, и для них выгоднее использовать местные возобновляемые ресурсы, в том числе энергию ветра. Кроме того, более 70% территории нашей страны, на которой проживает около 20 млн человек, находится вне системы централизованного энергоснабжения.

Нельзя сбрасывать со счетов, что наша страна обладает самым большим в мире ветроэнергетическим потенциалом - порядка 40 млрд кВт·ч электроэнергии в год. А это значит, что эксплуатация крупных и особенно малых ветроэнергоустановок на огромных российских пространствах могла бы быть эффективней. Районы Российского Севера, и в частности Обская губа, Кольский полуостров, бо́льшая часть прибрежной полосы Дальнего Востока, по мировой классификации относятся к самым ветреным зонам. Среднегодовая скорость ветра на высотах 50-100 м, для которых производятся современные ветроагрегаты, составляет 11-12 м/с, что вдвое превышает так называемый экономический порог ветроэнергетики, связанный с окупаемостью ВЭС.

Энергетическая проблема является одной из основных проблем человечества. Основными источниками энергии, на данный момент, являются газ, уголь и нефть. По прогнозным данным запасов нефти хватит на 40 лет, угля на 395 лет и газа на 60 лет. Мировая система энергетики подвергается гигантским проблемам.

Относительно электроэнергии, то источники электрической энергии представлены различными электростанциями – тепловыми, гидроэлектростанциями и атомными электростанциями. В результате стремительного истощения природных энергетических носителей на первый план выводится задача по поиску новых методов получения энергии.

Источник электрической энергии (Electric energy source) - электротехническое изделие (устройство), преобразующее различные виды энергии в электрическую энергию (ГОСТ 18311-80).

Источники основной электрической энергии

Тепловые электростанции

Работают на органическом топливе – мазут, уголь, торф, газ, сланцы. Размещаются ТЭС, главным образом, в том регионе, где присутствуют природные ресурсы и вблизи крупных нефтеперерабатывающих предприятий.

Гидроэлектростанции

Атомные электростанции

Для нагрева воды требуется энергия тепла, которая выделяется в результате ядерной реакции. А в остальном она схожа с тепловой электростанцией.

Нетрадиционные источники энергии

К ним относятся ветер, солнце, тепло земных турбин и океанические приливы. В последнее время их все чаще используют как нетрадиционные дополнительные источники энергии. Ученые утверждают, что к 2050 году станут основными, а обычные потеряют свое значение.

Энергия солнца

Есть несколько способов ее применения. Во время физического метода получения энергии солнца применяются гальванические батареи, способные поглощать и или тепловую. Также используется система зеркал, отражающая солнечные лучи и направляющая их в трубы, заполненные маслом, где концентрируется солнечное тепло.

В некоторых регионах целесообразнее использовать солнечные коллекторы, с помощью которых есть возможность в частичном решении экологической проблемы и использования энергии для бытовых нужд.

Основные достоинства энергии солнца – общедоступность и неисчерпаемость источников, полная безопасность для окружающей среды, основные экологически чистые источники энергии.

Главный недостаток – потребность в больших площадях земли для строительства солнечной электростанции.

Энергия ветра

Ветряные электростанции способны производить электрическую энергию только в том случае, когда дует сильный ветер. «Основные современные источники энергии» ветра – ветряк, представляющий собой достаточно сложную конструкцию. В нем запрограммированы два режима работы – слабый и сильный ветер, а также есть остановка двигателя, если очень сильный ветер.

Основной недостаток - шум, получаемый во время вращения лопастей пропеллеров. Самыми целесообразными являются небольшие ветряки, предназначенные для обеспечения экологически безопасной и недорогой электроэнергией дачных участок или отдельных ферм.

Приливные электростанции

Для производства электрической энергии используется энергия прилива. Для того, чтобы построить простейшую приливную электростанцию потребуется бассейн, перекрытое плотиной устье реки или залив. Плотина оснащена гидротурбинами и водопропускными отверстиями.

Вода во время прилива поступает в бассейн и когда происходит сравнение уровней воды в бассейне и в море, водопропускные отверстия закрываются. С приближением отлива водный уровень уменьшается, напор становится достаточной силы, турбины и электрогенераторы начинают свою работу, постепенно вода из бассейна уходит.

Новые источники энергии в виде приливных электростанций имеют некоторые минусы – нарушение нормального обмена пресной и соленой воды; влияние на климат, так в результате их работы меняется энергетический потенциал вод, скорость и площадь перемещения.

Плюсы – экологичность, невысокая себестоимость производимой энергии, сокращение уровня добычи, сжигания и транспортировки органического топлива.

Нетрадиционные геотермальные источники энергии

Для производства энергии используется тепло земных турбин (глубинные горячие источники). Данное тепло можно применять в любом регионе, но расходы смогут окупиться лишь там, где горячие воды максимально приближены к земной коре – местности активной деятельности гейзеров и вулканов.

Основные источники энергии представлены двумя типами – подземный бассейн естественного теплоносителя (гидротермальный, паротермальный или пароводяной источники) и тепло горных горячих пород.

Первый тип представляет собой готовые к применению подземные котлы, из которых пар или воду добывать можно обычными буровыми скважинами. Второй тип дает возможность получения пара или перегретой воды, которые в дальнейшем можно использовать в энергетических целях.

Основной недостаток обоих типов – слабая концентрация геотермических аномалий, когда горячие породы или источники подходят близко к поверхности. Также требуется обратная закачка в подземный горизонт отработанной воды, поскольку термальная вода имеет множество солей токсичных металлов и химических соединений, которые нельзя сбрасывать в поверхностные водные системы.

Достоинства – данные запасы неисчерпаемы. Геотермальная энергия пользуется большой популярностью благодаря активной деятельности вулканов и гейзеров, территория которых занимает 1/10 площади Земли.

Новые перспективные источники энергии – биомасса

Биомасса бывает первичной и вторичной. Для получения энергии можно использовать высушенные водоросли, отходы сельского хозяйства, древесину и т. д. Биологический вариант использования энергии – получение из навоза биогаза в результате сбраживания без доступа воздуха.

На сегодняшний день в мире накопилось приличное количество мусора, ухудшающего окружающую среду, мусор оказывает губительное влияние на людей, животных и на все живое. Именно поэтому требуется развитие энергетики, где будет использоваться вторичная биомасса для предотвращения загрязнения окружающей среды.

Согласно подсчетам ученых, населенные пункты могут полностью обеспечивать себя электроэнергией только за счет своего мусора. Более того, отходы практически отсутствуют. Следовательно, будет решаться проблема уничтожения мусора одновременно с обеспечением населения электроэнергией при минимальных расходах.

Преимущества – не повышается концентрация углекислого газа, решается проблема использования мусора, следовательно, улучшается экология.

Давайте посмотрим на нетрадиционые варианты выработки энергии, а именно ветровые электростанции. Пока еще вопрос спорный в возможности существования этого вида энергодобычи без серьезных дотаций, возможность широкого и повсеместного применения этих устройств (а не только для специфических случаев). Однако не оспорим вопрос экологичности. Ну и это еще к тому же красиво:-)

Давайте посмотрим...

В Европе и США огромные ветряки — привычный элемент загородного пейзажа. Эти красивые гиганты устанавливаются не только на земле, но и на водных просторах.



Идея использовать силу ветра для получения электрической энергии не нова. Она родилась ещё в конце 19 века, а именно зимой 1887-88 годов, когда один из основателей американской электрической индустрии, Чарльз Ф. Браш построил прототип автоматически управляемой ветровой турбины для производства электроэнергии. На тот момент она была гигантской — диаметр ротора равнялся 17 метрам, и состоял из 144 лопастей, изготовленных... из кедра.

В Европе первая ветряная электрическая станция была пущена в 1900 году, а к началу ІІ-ой мировой войны на планете работало несколько миллионов ветряков.

Современный ветряк — это стальная башня высотой от 70 до 125 м, на вершине которой установлены генератор и ротор с лопастями из композиционных материалов. Сегодня используют 56-метровые лопасти.

Огромна энергия движущихся воздушных масс. Запасы энергии ветра более чем в сто раз превышают запасы гидроэнергии всех рек планеты. Постоянно и повсюду на земле дуют ветры. Климатические условия позволяют развивать ветроэнергетику на огромной территории.

На первый взгляд ветер кажется одним из самых доступных и возобновляемых источников энергии. В отличие от Солнца он может "работать” зимой и летом, днем и ночью, на севере и на юге. Но ветер - это очень рассеянный энергоресурс.

Ветровая энергия практически всегда "размазана” по огромным территориям. Основные параметры ветра - скорость и направление - меняются подчас очень быстро и непредсказуемо, что делает его менее "надежным”, чем Солнце. Таким образом, встают две проблемы, которые необходимо решить для полноценного использования энергии ветра. Во-первых, это возможность "ловить” кинетическую энергию ветра с максимальной площади. Во-вторых, еще важнее добиться равномерности, постоянства ветрового потока. Вторая проблема пока решается с трудом.

К решению первой проблемы привлекли специалистов самолета строения умеющих выбрать наиболее целесообразный профиль лопасти, для получения максимальной энергии ветра. Усилиями ученых и инженеров созданы самые разнообразные конструкции современных ветровых установок.

Это многолопастные «ромашки» и винты вроде самолетных пропеллеров с тремя, двумя и даже одной лопастью. Вертикальные конструкции хороши тем, что улавливают ветер любого направления; остальным приходится разворачиваться по ветру. Такой вертикальный ротор напоминает разрезанную вдоль и насаженную на ось бочку. Встречаются и оригинальные решения. Например, тележка с парусом ездит по кольцу из рельс, а ее колеса приводят в действие электрогенератор.


Кликабельно 1700 рх

Среди десятков тысяч ветряков есть огромные, а есть и маленькие, на один домик. А это как раз гигантские ветряки. Один из самых больших ветряков на сегодня построен в сентябре 2002 под Магдебургом в Германии. Его мощность — 4.5 мегаватт, каждая из трех лопастей достигает 52 метров в длину и 6 в ширину, и весит по 20 тонн. Крепится ротор на 120-метровой башне.

Последнее достижение ветроэнергетики — ветряки, диаметр ротора которых превышает размах крыла самолетов-гигантов, даже нашего «Руслана». Такая установка имеет мощность 1-2 мегаватта и способна обеспечивать электроэнергией 800 современных жилых домов.

Наиболее распространенным типом ветровых энергоустановок (ВЭУ) является турбина с горизонтальным валом и числом лопастей от 1 до 3. По оценкам различных авторов, ветроэнергетический потенциал Земли равен 1200 ТВт, однако использования этого вида энергии в различных районах Земли неодинаковы. В России валовой потенциал ветровой энергии - 80 трлн. кВт/ч в год, а на Северном Кавказе - 200 млрд. кВт/ч (62 млн. т усл. топлива). Эти величины существенно больше соответствующих величин технического потенциала органического топлива. Среднегодовая скорость ветра на высоте 20-30 м над поверхностью Земли должна быть достаточно большой, чтобы мощность воздушного потока, проходящего через надлежащим образом ориентированное вертикальное сечение, достигала значения, приемлемого для преобразования.

Ветровые электростанции выгодны, как правило, в регионах, где среднегодовая скорость ветра составляет 6 метров в секунду и выше и которые бедны другими источниками энергии, а также в зонах, куда доставка топлива очень дорога.


Норвегия объявила о планах построить самый большой в мире ветряк в 2011 году. Работы уже ведутся. Высота ветряной турбины будет составлять 533 фута, а диаметр ротора — 475 футов. Как ожидается, турбина будет обеспечивать электроэнергией 2 000 домов. Рекордный опытный образец стоит $67,5 миллионов.

Ветроэнергетическая установка, расположенная на площадке, где среднегодовая удельная мощность воздушного потока составляет около 500 Вт/м2 (скорость воздушного потока при этом равна 7 м/с), может преобразовать в электроэнергию около 175 из этих 500 Вт/м2. следует также учитывать те изменения, которые вносятся ветровыми установками в ландшафт местности, их размещение должно соответствовать не только стандартам безопасности и эффективности, но и правильного размещения на местности (мельницы ВЭУ, расположенные хаотично менее эффективны, чем те, которые расположены в определенной геометрической последовательности).

Малые ВЭУ обычно предназначаются для автономной работы. Системы, которым они выдают энергию, привередливы, требуют подачи энергии более высокого качества и не допускают перерывов в питании, например, в периоды безветрия. Поэтому им необходим дублер, то есть резервные источники энергии, например, дизельные двигатели той же, как у ветроустановок, или меньшей мощности.

Что касается более мощных ветроустановок (свыше 100кВт), то они применяются как электростанции и включаются обычно в энергосистемы. Обычно на одной площадке устанавливаются достаточно большое количество ВЭУ, образующих так называемую ветровую ферму. На одном краю (фермы) может дуть ветер, на другом в это время тихо. Ветряки нельзя ставить слишком тесно, чтобы они не загораживали друг друга. Поэтому (ферма) занимает много место.

Ветроэнергетика сильно зависит от капризов природы. Скорость ветра бывает настолько низкой, что ветра агрегат совсем не может работать, или настолько высокой, что ветра агрегат необходимо остановить и принять меры по его защите от разрушения. Если скорость ветра превышает номинальную рабочую скорость, часть извлекаемой механической энергии ветра не используется, с тем чтобы не превышать номинальной электрической мощности генератора. Для эффективной работы ВЭУ их размещают на открытых пространствах, реже на территориях сельскохозяйственных угодий, что повышает их продуктивность. В горных районах ветра установки работают эффективно из-за природных особенностей данных местностей, там преобладает движение воздушных масс с большой силой и скоростью, к тому же это дает энергию в труднодоступные районы.

Правильная установка влияет на КПД ветра агрегатов поэтому удельная выработка электрической энергии в течение года составляет 15 - 30% энергии ветра или даже меньше в зависимости от место положения и параметров установки.

В настоящее время рекорд по размеру и мощности (141 метр и 7 мегаватт) принадлежит ветрогенератору Enercon E-126, расположенному около немецкого городка Эмден.

Установка ветряка Enercon E-126:

Ветряные двигатели не загрязняют окружающую среду, отсутствие влияния на тепловой баланс атмосферы Земли, отсутствие потребления кислорода, выбросов углекислого газа и других загрязнителей. Чтобы производить с их помощью много электроэнергии, необходимы огромные пространства земли. Лучше всего они работают там, где дуют сильные ветры.

Сегодня ветроэлектрические агрегаты надежно снабжают током нефтяников; они успешно работают в труднодоступных районах, на дальних островах, в Арктике, на тысячах сельскохозяйственных ферм, где нет поблизости крупных населенных пунктов и электростанций общего пользования.

В проектировании установки самая трудная проблема состояла в том, чтобы при разной силе ветра обеспечить одинаковое число оборотов пропеллера. Ведь при подключении к сети генератор должен давать не просто rкакую-то электрическую энергию, а только переменный ток с заданным числом циклов в секунду, т. е. со стандартной частотой 50 - 60 Гц. Поэтому угол наклона лопастей по отношению к ветру регулируют за счет попорота их вокруг продольной оси: при сильном ветре этот угол острее, воздушный поток свободнее обтекает лопасти и отдает им меньшую часть своей энергии. Помимо регулирования лопастей весь генератор автоматически поворачивается на мачте против ветра.

Одна из возникших проблем ветра агрегатов это избыток энергии в ветреную погоду и не достаток ее период без ветрея. Способов хранения ветреной энергии очень много рассмотрим наиболее простые один из способов: состоит в том, что ветряное колесо движет насос, который накачивает воду в расположенный выше резервуар, а потом вода, стекая из него, приводит в действие водяную турбину и генератор постоянного или переменного тока. Существуют и другие способы, и проекты: от обычных, хотя и маломощных аккумуляторных батарей до раскручивания гигантских маховиков или нагнетания сжатого воздуха в подземные пещеры и вплоть до производства водорода в качестве топлива. Особенно перспективным представляется последний способ. Электрический ток от ветра агрегата разлагает воду на кислород и водород. Водород можно хранить в сжиженном виде и сжигать в топках тепловых электростанций по мере надобности.

Ветряки ставят не только на суше, но и на водных просторах:

Самый высокий ветряк в мире находится в провинции Сан-Хуан на высоте 4 110 метров над уровням моря. Его установила самая крупная золотодобывающая компания в мире — Баррик. Ветряк занесен в книгу рекордов Гиннеса.

Ветроустановка — дорогая техника, но расходы на ее приобретение окупятся в течение первых 7 лет эксплуатации. Расчетный срок службы — 25 лет.

Европейский лидер по использованию энергии ветра — Дания. В этой стране их обычно размещают на скалистых рифах и мелководье, на расстоянии до 2 км от берега.


Кликабельно

Самым ветреным местом в Европе считают шотландские Внешние Гибриды. Северная часть этих островов продувается постоянно. Ветер там практически никогда не утихает.

В конце прошлого года компания Deepwater Wind объявила о планах создания крупнейшей в мире глубоководной ветровой электростанции.

Предполагается, что она будет возведена на протяжении от 29 до 43 км от побережья штата Род-Айленд и Массачусетс и будет производить до 1 000 мегаватт, что сопоставимо с ядерным энергоблоком. Ветряки будут установлены в океане с глубиной дна 52 м — это значительно глубже, чем любая другая современная ветроэлектростанция.


Кликабельно


А вот еще есть такой интересный ветряк

Первая в мире плавучая ветряная турбина была установлена в Северном море у побережья Норвегии. Об этом сообщила во вторник норвежская энергетическая компания StatoilHydro. Турбина, названная Hywind, достигает в высоту 65 метров и весит 5.300 тонн. Ее установили примерно в 10 километрах от острова Кармой, у юго-западного побережья страны, говорится в пресс-релизе компании.

"Ветряк" установлен на плавающей платформе, которая закреплена тремя якорями. В качестве балласта выступают вода и камни, помещенные внутрь платформы.

StatoilHydro планирует проводить испытания Hywind в течение последующих двух лет, прежде чем примет решение о производстве большего числа плавучих ветровых турбин.

По мнению специалистов StatoilHydro, данная технология может представлять интерес для Японии, Южной Кореи, американского штата Калифорния, части Восточного побережья Соединенных Штатов и Испании. Это лишь часть потенциальных рынков.

Hywind может устанавливаться на большем удалении от берега, чем статические ветровые турбины, уже находящиеся в эксплуатации. Речь идет о глубинах от 120 метров до 700 метров, что позволяет размещать новую турбину значительно дальше от берега.

В создание 2,3-мегаваттной плавающей турбины было вложено в общей сложности 400 млн. крон (46 миллионов евро), что делает ее дороже наземных аналогов. Теперь главная задача компании-производителя - удешевить свою разработку.

Ветровая энергия это огромная энергия, надо только правильно ее получать и хранить.

Рассмотрим теперь отрицательное влияние ВЭУ на среду обитания человека и животных, на телевизионную связь и пути сезонной миграции птиц. Действительно крупные ВЭУ влияют на телесигнал. На расстоянии до 0.5 км, они вызывают помехи в телесигнале, это связано с тем, что лопасти ветрового колеса ВЭУ отражают сигналы, вызывая помехи при передачи телевизионного сигнала. Вследствие работы крупных ВЭУ больше 20 кВт возникает достаточное количества инфразвука, которое влияет на состояние человека и животных. При работе крупных ВЭУ возникает и естественный шум от работы ветрового колеса. Поэтому размещение ВЭУ больше 10 кВт нежелательно в переделах черты города. С этими отрицательными факторами пытаются бороться, в частности применяя новые виды материала, которые способны пропускать сигналы в большом спектре и т.д.

Ветровая энергетика вызывает все больше интерес и стремление к усовершенствованию установок для максимальной эффективности. Во многих страна начинают их применять в домах, на фермах, на небольшом производстве.

А вот такой проект:

Необычная ветровая электростанция, имеющая не три, а две лопасти, в скором времени появится у восточного побережья Шотландии. Экстравагантный ветряк, видимо, будет славен ещё и тем, что сможет принимать вертолёты.По данным Inhabitat, шотландский министр энергетики Фергюс Юинг (Fergus Ewing) на днях объявил, что правительство одобрило строительство инновационной ветровой турбины по проекту голландской компании 2-B Energy. Гигантский двухлопастный ветряк мощностью 6 мегаватт будет возведён в составе комплекса Energy Park Fife примерно в 20 метрах от берега.


Вызывающая немало вопросов вертолётная площадка присутствует только на проектных картинках в разделе «общее впечатление». В шотландском правительстве посадка геликоптеров на ветряк не обсуждается (иллюстрации 2-B Energy).

2-B Energy с нуля разработала новый тип турбин в 2007 году. Её ветряки предназначены именно для работы на воде, в прибрежной зоне, где нет строгих требований к шуму и жёстких ограничений по размеру конструкции. Что касается двух лопастей вместо трёх, то компания поясняет: чем меньше движущихся частей, тем лучше в плане ремонтопригодности.

Как сообщает BusinessGreen, 2-B Energy хотела установить в Шотландии два ветряка, но получила одобрение только на один.

«Тот факт, что инновационные компании решают проверить свои новые идеи именно в Шотландии, в лишний раз подтверждает репутацию нашей страны как места для разработки и внедрения всех типов новых „зелёных“ энергетических технологий», - заявил министр Юинг. Судя по всему, строительство экспериментальной турбины начнётся в 2014 году.



Кликабельно

Ну и еще один проектик:

Небольшая американская фирма Joby Energy разработала проект установки в виде огромного летающего змея. Змей представляет собой прямоугольный металлический каркас, несущий на себе десяток небольших лопастей. Сначала лопасти приводятся в действие моторами и, подобно пропеллеру самолета, поднимают каркас на высоту 400-500 метров.

Там в дело вступают мощные высотные ветры, которые вращают лопасти, вырабатывая электрическую энергию. Часть ее идет на поддержание каркаса в воздухе, а основная часть передается на землю по той металлической «нити», которая соединяет каркас с местом запуска. Конечно, для этого требуются прочные и легкие материалы, необходимые для создания летающего (и подвергающегося мощнейшим давлениям) гигантского, в десятки метров длиной, каркаса, и электроника, которая должна обеспечивать автоматическое управление полетом и маневрированием, и датчики, непрерывно измеряющие скорость, направление ветра и ориентацию аппарата, и компьютеры, которые по указаниям этих датчиков автоматически и непрерывно контролируют и нужным образом меняют ориентацию каркаса к ветру, чтобы обеспечить максимальный кпд, и многое другое, чего не было еще 10 лет назад.


Кликабельно 3000 рх

Новый план не просто реален. Он еще и достаточно перспективен, о чем говорит одна, но весьма красноречивая цифра: нынешняя потребность человечества в энергии составляет, по подсчетам, 17 тераватт, между тем как мощность ветров в тропосфере равна 870 тераваттам, то есть в 50 с лишним раз больше. (Напомним, что тропосферой называется приземный слой атмосферы до высоты в 20-30 километров, отделенный от выше лежащей стратосферы переходным слоем; под этим слоем образуются характерные для тропосферы постоянные «струйные потоки» (jet streams) со скоростями ветра от 100 до 400 километров в час. Для сравнения: на земле ураганной считается скорость выше 117 километров в час.) Далеко не случайно эта фирма так энергично испытывает одну систему за другой. Агентство НАСА в ближайшее время проводит нечто вроде всеамериканского конкурса на лучший проект надежной и безопасной летающей турбины мощностью в 300 киловатт. Тот факт, что на этом конкурсе фирма будет лишь одним из нескольких десятков конкурентов, свидетельствует об интересе, проявляемом к новому виду «чистой» энергии. Но еще более ярко о том же говорит интерес, проявляемый к новому плану американским правительством. Это именно оно выделило НАСА деньги для координации и проверки всех этих частных проектов.


Сейчас на предварительном испытании находятся самые разные варианты летающих турбин — в виде воздушного змея, подвесного аэростата, летающего крыла, парашюта и так далее. Отбор поручен НАСА, уже имеющему опыт такой работы. Предстоит прежде всего найти наиболее эффективный вид носителя турбины. Для этого все они будут проверяться в одинаковых условиях полета на высоте до 600 метров — это предел, который для начала установило федеральное правительство.

Даже на этой высоте летающие турбины вполне могут показать свои преимущества перед наземными, ведь сила ветра, как уже говорилось, растет с высотой, а мощность ветряков, как уже выяснила практика, пропорциональна кубу силы ветра. Это значит, что даже при удвоенной за счет высоты силе ветра летающая турбина может дать в 8 раз больше мощности, чем наземная, а при утроенной — даже в 27 раз больше. Как полагают расчетчики, в будущем, когда такие турбины будут летать на высоте 8-9 километров, на уровне самых низких «струйных течений» с их средней скоростью ветра 240 километров в час, они смогут давать 20 000-40 000 ватт на квадратный метр лопастей вместо 500 ватт, которые дают нынешние наземные ветряки .


Кроме того, у них есть еще то преимущество, что установка запуска, где крепится нанотрубочная «нить» (она же — кабель для приема тока), занимает очень малую площадь. Да и стоимость турбины-змея много меньше, чем, скажем, того норвежского гиганта, который сейчас готовится выплыть в море. С другой стороны, летающие ветряки, конечно, уступают таким гигантам по максимальной мощности каждой отдельной установки. Чтобы сравняться с мощностью норвежского плавучего ветряка, летающий ветряк должен иметь рабочую площадь в несколько сот квадратных метров, а это ставит перед конструкторами очень трудные — и пока неразрешимые — технические задачи (в смысле прочности, подъемной силы и так далее.) Так что перегнать наземные ветряки по суммарной мощности можно только за счет я количества, и поэтому энтузиасты нового плана говорят сегодня о создании огромной сети таких летающих ветряков, пусковые установки которых будут собраны на определенных участках той или иной страны — нечто вроде проекта «Дезертек», предлагающего покрыть Сахару сплошными солнечными зеркалами.


В отличие от «Дезертека», в данном случае возникает, однако, сложный вопрос о воздушном пространстве. Каждая летающая турбина требует своей нити, а поскольку эта турбина не стоит на одном месте, а под воздействием ветра и нити описывает определенные траектории в небе, ей нужен также свой «воздушный коридор» — этакий колодец, на дне которого находится ее пусковая установка, а «стены» заданы границами беспрепятственного перемещения этой турбины под действием ветра. Но ведь в воздухе сегодня летают самолеты: частные — на малой высоте, военные, грузовые и пассажирские — на большой, и каждому из них требуется свой воздушный коридор. Система этих коридоров устанавливается в национальном и международном масштабе, и наличие множества «нитей» и самих летающих турбин может создать огромную опасность. В силу этого развитие сети летающих турбин требует сложных диспетчерских расчетов и системы международных соглашений. Поэтому НАСА предполагает провести свои конкурсные испытания уже существующих проектов летающих турбин и проверку проектов их дальнейшего совершенствования в одном единственном месте — на побережье Калифорнии (с тем, чтобы нити проходили над морем) и не выше 600 метров, чтобы не мешать рейсам обычной авиации.

И все же, несмотря на все эти трудности, можно сказать, что план добычи энергии из воздуха начинает обретать реальные очертания. Свой и, возможно, весьма существенный со временем вклад в освобождение мира от нефтяной удавки и опасности глобального потепления летающие ветряки будущего, наверное, внесут.



Кликабельно




Кликабельно 2000 рх


Кликабельно


А вот что случается с ветряками во время эксплуотации.

Использование энергии ветра - одно из перспективных направлений современной энергетики. Последние годы наблюдается массовое увеличение размеров и количества ветропарков во всех прогрессивных странах мира. «Ветряки» становятся выше, а их лопасти длиннее и легче, что позволяет им работать даже при небольшой силе ветра. Сооружения устанавливаются повсеместно: в лесах, полях, на побережьях, в прибрежных водах морей и океанов (оффшорные парки). Даже в густонаселенных мегаполисах архитекторы умудряются внедрить ветрогенераторы в конструкции небоскребов, переведя их на частичное самообеспечение.

Для координации усилий и быстрого реагирования на изменения запросов рынка ветровой энергии создана международная некоммерческая организация WWEA (World Wind Energy Association) со штаб-квартирой в Германии. Сегодня ассоциация объединяет интересы более чем сотни стран-участниц. Задачей WWEA является постоянный мониторинг потребностей и предложений в области возобновляемой энергетики, проведение исследований и предоставление консультаций заинтересованному сообществу.

Ассоциация отслеживает развитие ветроэнергетической отрасли во всех странах и составляет рейтинг ведущих потребителей и поставщиков соответствующего оборудования. В соответствии с информацией, опубликованной на сайте организации 10 февраля 2016 года, лидерами в использовании альтернативной энергетики является следующая десятка стран.

Десять стран с самой развитой ветроэнергетикой в 2015 году

Китай. Суммарная выработка электроэнергии в ветропарках Китая в конце 2015 года приблизилась к 150 ГВт. При этом страна является относительно новым игроком на рынке ветроэнергетики. Но темпы роста промышленности диктуют свои условия, поэтому в ближайшие годы планируется дальнейшее наращивание ветроэнергетического потенциала страны. Заявленная страной цифра потребления ветровой энергии к 2020 году составляет 200 ГВт, однако, судя по ежегодному приросту 25-28%, этот срок наступит раньше.

США. Развитие альтернативной энергетики, в том числе - ветровой, в Соединенных Штатах - постоянный, планомерный процесс. К началу 2016 года суммарная мощность американских ветропарков оценена в 74,35 ГВт. В силу довольно жесткой регуляторной политики, проводимой властями в энергетической области, в стране не наблюдается ярко выраженного бума строительства «ветряков», однако страна продолжает уверенно удерживать второе место.

Германия является традиционным лидером в производстве ветровых турбин. Все самое инновационное оборудование в этой отрасли производится здесь. Общая мощность собственных ветроэлектростанций Германии - на текущий момент - 45,2 ГВт, что составляет около трети суммарной производительности ветропарков всего Евросоюза. Прирост доли энергии, вырабатываемой «ветряками» в стране в 2015 году составил почти 10%.

Испания занимает 4-е место в рейтинге стран с самой развитой ветроэнергетикой. В условиях угнетенного состояния экономики и нехватки собственных природных ресурсов альтернативные виды энергии являются стратегическим направлением развития страны. Суммарная мощность ветроэлектростанций страны составляет порядка 23 ГВт. В соответствии с данными WWEA за 2015 год в стране не наблюдалось существенного прироста доли энергии, вырабатываемой «ветряками».

Индия , переживающая бурный рост промышленности, одновременно с этим испытает острую нехватку энергетических ресурсов. Жесткий дефицит традиционных источников в значительной степени сформировал взгляды государства на альтернативные виды получения энергии. Сегодня индийские ветропарки находятся на 5-м месте в мире по суммарной мощности с показателем, приближающимся к 25 ГВт. За 2015 год прирост доли ветровой энергии в стране составил около 10%.

Развитие ветроэнергетики в таких странах ЕС, как Великобритания , Италия, Франция связано, в первую очередь, с постепенным отказом от использования атомной энергии. Страны не только занимаются активным строительством ветропарков, но также являются ведущими разработчиками и производителями турбинного оборудования, наряду с Германией. По состоянию на конец 2015 года мощности ветропарков составляют: Британия - 13,6 ГВт, Франция - 10,3 ГВт, Италия - 8,95 ГВт.


Власти Канады способствуют внедрению альтернативных источников энергии путем предоставления льгот на установку и модернизацию соответствующего оборудования. Одни из передовых в этом отношении - штаты Онтарио и Новая Шотландия. На сегодняшний день суммарная мощность ветрогенерационных парков Канады составляет 11,2 ГВт, а прирост мощности в сравнении с 2014 годом составил 15,6%.

В Бразилии ветропарки уже несколько лет являются неотъемлемой частью энергетической системы, наряду с солнечными станциями. Закупка электроэнергии государством производится путем проведения открытых аукционов, результаты которых подтверждают конкурентоспособность энергии, вырабатываемой «ветряками». Средняя стоимость киловатт-часа электричества для потребителя в Бразилии составляет порядка 0,05 доллара. В течение 2015 года страна показала абсолютный мировой рекорд по приросту ветроэнергетических мощностей, который составил 46,2%! Сегодня суммарная мощность ветроэлектростанций Бразилии составляет 8,7 ГВт.

Дания. В силу своих небольших размеров страна не может конкурировать по общему количеству производимой «ветряками» энергии с такими гигантами как Китай и США. Общая мощность ветропарков Дании составляет 5 ГВт, поэтому в первую десятку рейтинга она не входит. Однако при пересчете количества киловатт ветровой энергии на душу населения, Дания является несомненным мировым лидером. Сегодня доля ветроэнергетики в общем энергетическом «котле» страны приближается к 30%, а к 2020 году планируется довести этот показатель до 50%. Также власти страны обнародовали программу, в соответствии с которой к 2050 году страна откажется от использования традиционных энергоресурсов полностью.


Самые мощные ветропарки в мире

Приведенные выше цифры показывают, что сегодня ветровая энергетика уже занимает значительную часть энергетической отрасли во всем мире. При этом в перспективе доля электроэнергии, вырабатываемой «ветряками» будет постоянно расти. В настоящее время крупнейшими поставщиками электроэнергии являются следующие ветропарки:

  • Ветропарк Alta Wind, Калифорния, США, производящий 1,55 ГВт чистой электроэнергии. Комплекс продолжает развиваться и уже к 2040 году планируется прирост его мощности до 4,0 ГВт;
  • ветроэнергетический комплекс Ganzu, расположенный на западе Китая и состоящий из нескольких крупных ветропарков, суммарная производительность которых составляет более 5 ГВт. В соответствии с планом развития, к 2020 году планируется наращивание мощностей до 20,0 ГВт;
  • Британский оффшорный массив London Array, расположенный дельте Темзы, - крупнейший проект такого рода. В настоящее время ветропарк на воде генерирует 0,63 ГВт электроэнергии. Суммарное количество электроэнергии, вырабатываемое всеми оффшорными ветроэлектростанциями Британии, составляет 3,6 ГВт. Предполагается, что к 2020 году этот показатель будет составлять 18,0 ГВт;
  • крупнейший ветропарк Индии, Jaisalmer, генерирующий более 1 ГВт электроэнергии. Владелец ветропарка, компания Suzlon Energy, также является и производителем оборудования, занимающая на мировом рынке ветровых турбин около 7%.

Основные игроки на рынке ветрогенерационного оборудования в 2015 году

До недавнего времени лидерами в производстве «ветряков» считались европейские страны Германия и Дания, а также Соединенные Штаты Америки. Наиболее востребованные ветрогенерационные установки выпускались под марками Vestas (Дания) и Enercon (Германия). Эти компании занимаются выпуском турбин мощностью от 0,8 до 7,5 МВт. Американские ветрогенераторы General Electric имеют максимальную мощность 3,6 МВт.

В последний год рекордную прибыль показали китайские производители. В частности, чистая прибыль компании Goldwind за 2015 год выросла почти на 56%, достигнув показателя 436 млн. USD. Общая мощность реализованных за год ветрогенераторов Goldwind составляет 7,8 ГВт. Однако утверждать, что традиционному доминированию Vestas и GE на мировом рынке положен конец нельзя, так как своим блестящим результатам Goldwind обязан, прежде всего, внутреннему рынку Китая.

Общая мощность установленных турбин Vestas в 2015 году составила 7,3 ГВт. Для американцев GE этот показатель равен 5,9 ГВт. Немецкий производитель Enercon занимает в рейтинге четвертое место. Помимо Goldwind в десятку крупнейших производителей «ветряков» в 2015 году вошли еще 4 компании из Китая.


Ветроэнергетика России

Возможности России в генерации ветровой энергии (которые в настоящее время практически не используются) оцениваются в 30% от общего электроэнергетического потенциала страны. Суммарный показатель мощности ветропарков России, который планируется достигнуть к 2020 году составляет 3 ГВт.

В настоящее время крупнейшие ветропарки России расположены в Крыму (общей мощностью около 60 МВт), в Калининградской области (5 МВт), на Чукотке и в Башкортостане (по 2,2 МВт). В различной степени готовности находятся проекты ветроэлектростанций мощностью от 30 до 70 МВт в Ленинградской, Калининградской областях, в Краснодарском крае, в Карелии, на Алтае и Камчатке.

В самом ближайшем будущем планируется строительство ветропарка мощностью 35 МВт в Ульяновске. В июне 2016 года Российская ассоциация ветроиндустрии планирует провести конкурс проектов ветропарков суммарной мощностью 1,6 ГВт.

Отрицательные стороны ветроэнергетики

Сегодня никто не сомневается, что ветроэнергетика - один из наиболее перспективных видов получения «чистой», «зеленой» энергии. Помимо сокращения выбросов углекислого газа, который является обязательным атрибутом «традиционных» ТЭС и ТЭЦ, использование «ветряков» позволяет добиться значительного снижения электроэнергии для потребителя, а период окупаемости оборудования составляет 7-8 лет.

Однако у ветровой энергетики есть и отрицательные стороны. В первую очередь - это зависимость от силы ветра, в результате чего поступления сгенерированного электричества в общую сеть происходят неравномерно. Поэтому полностью отказаться от использования традиционных ГЭС и ТЭС на данном этапе развития альтернативной энергетики не представляется возможным, так как они необходимы для стабилизации работы сетей.

Вторым отрицательным фактором является то, что география возможного расположения «ветряков» очень часто не совпадает с географией потребителей. Данная проблема решается путем реконструкции или полного перекроя энергосистемы, что, в свою очередь связано со значительными временными и финансовыми затратами.

Кроме этого необходимо сказать и о том, что мощные ветропарки также оказывают воздействие на окружающую среду: нагревают почву и влияют на микроклимат. Исследования, проведенные в США, показали, что прирост среднесуточной температуры на территории крупной ветрогенерационной станции за 9 лет составил 0,72 градуса Цельсия. При этом ученые связывают такой температурный скачок с тем, что в период проведения исследований с 2003 по 2011 годы, количество «ветряков» на станции возросло с 111 до 2358 штук. По их мнению, при стабильном количестве установок прирост температуры также должен замедлится.


Энергетическая отрасль справляется со своей задачей достаточно уверенно, но масштабы нашей страны таковы, что полное обеспечение электроэнергией всех отдаленных или труднодоступных районов пока невозможно. Это связано с множеством факторов, преодолеть которые в нынешних условиях слишком дорого или технически недостижимо.

Поэтому все более пристальное внимание приходится обращать на альтернативные источники, способные удовлетворять потребности отсталых регионов без участия магистральных сетей. Перспективным направлением является ветроэнергетика, использующая дармовой .

Устройство и виды ветровых электростанций

Ветроэлектростанции (ВЭС) используют энергию ветра для выработки электротока. Крупные станции состоят из множества , объединенных в единую сеть и питающих большие массивы - поселки, города, регионы. Более мелкие способны обеспечивать небольшие жилые массивы или отдельные дома. Станции классифицируются по различным признакам, например, по функциональности:

  • мобильные,
  • стационарные.

По расположению:

  • прибрежные
  • офшорные
  • наземные
  • плавающие.

По типу конструкции:

  • роторные,
  • крыльчатные.

Наибольшее распространение в мире получили крыльчатные станции. Они имеют большую эффективность и способны производить достаточно большое количество электроэнергии, чтобы обеспечивать ею потребителей в масштабах целой энергетической отрасли. При этом, распространение таких станций имеет специфическую конфигурацию и встречается не повсеместно.

Принцип работы

Как уже говорилось, ВЭС имеют роторную или крыльчатую конструкцию. Роторные станции, как правило, имеют устройства с . Они во многом удобнее, чем крыльчатые, так как не издают при работе сильный шум и не требовательны к установке по направлению ветра. При этом, роторные конструкции менее эффективны и могут использоваться на небольших частных станциях.

Крыльчатые устройства способны выдавать максимальный эффект. Они используют получаемую энергию намного эффективнее, чем роторные образцы, но нуждаются в правильном ориентировании по отношению к потоку, что означает присутствие дополнительных приспособлений или оборудования.

Все виды действуют по одному принципу - поток ветра раскручивает подвижную часть, которая передает вращение на генератор, вследствие чего в системе образуется электроток. Он заряжает аккумуляторы, от которых питаются инверторы, преобразующие полученный ток в стандартное напряжение и частоту, подходящие для приборов потребления.

Для обеспечения большого числа потребителей отдельные ветрогенераторы соединяются в систему, образуя станции - ВЭС.

Преимущества и недостатки ветряных электростанций

К преимуществам ВЭС можно отнести:

  • независимость от ископаемых ресурсов;
  • используется абсолютно бесплатный источник энергии;
  • экологическая чистота методики - никакого вреда окружающей природе не наносится.

При этом, есть и недостатки:

  • неравномерность ветра создает определенные трудности в выработке энергии и вынуждает использовать большое число; аккумуляторных батарей;
  • ветряки издают шум при работе;
  • низок, увеличить его очень сложно;
  • стоимость оборудования и, соответственно, электроэнергии, намного выше, чем цена сетевого электричества;
  • окупаемость оборудования с ростом его мощности значительно снижается. .

Использование небольших станций способно обеспечить энергией ограниченное количество потребителей, поэтому для крупных населенных пунктов или регионов требуются большие устройства. При этом, ветряки большой мощности нуждаются в соответствующих потоках ветра и равномерности его движения, что для условий нашей страны не характерно. В этом кроется основная причина низкого распространения ветряков по сравнению с европейскими странами.

Экономическое обоснование строительства ВЭС

С точки зрения экономики, строительство ВЭС имеет смысл только при отсутствии других способов энергообеспечения. Оборудование стоит очень дорого, обслуживание и ремонт требуют постоянных расходов, а срок службы ограничен 20 годами, и это в условиях Европы. Для России этот срок можно снизить не менее, чем на треть. Поэтому использование ВЭС экономически малоэффективно.

С другой стороны, при полном отсутствии альтернативных вариантов или при наличии оптимальных условий, обеспечивающих качественную и равномерную работу ветряков, использование ВЭС становится вполне приемлемым способом энергообеспечения.

Важно! Речь идет именно о крупных станциях, снабжающих целые регионы. Ситуация с бытовыми или частными станциями выглядит более привлекательно.

Мощности промышленных станций

Промышленные ВЭС имеют весьма высокую мощность, способную обеспечивать крупные населенные пункты или регионы. Например, ВЭС «Ганьсу» в Китае имеет 7965 мВт, «Энеркон Е-126» выдает 7,58 мВт , и это еще не предел.

Следует сразу же оговориться, что речь идет о , другие модели вырабатывают намного меньше энергии. Тем не менее, объединенные в крупные станции, ветряки способны на производство вполне достаточного количества электроэнергии. Объединенные комплексы вырабатывают суммарную мощность в 400-500 мВт, что вполне может сравниться с производительностью ГЭС.

Мелкие станции имеют более скромные показатели и могут рассматриваться только как точечные источники, питающие ограниченное число потребителей.

Ведущие мировые производители

В число наиболее известных производителей ветрогенераторов и оборудования для ветроэнергетической отрасли входят компании:

  • Vestas,
  • Nordex,
  • Superwind,
  • Panasonic,
  • Ecotecnia,
  • Vergnet.

Российские производители пока не готовы конкурировать с этими фирмами, так как вопрос о создании качественных и производительных ветрогенераторов в России до сих пор не ставился достаточно плотно.

География применения

Наибольшее распространение ветроэнергетика получила на западном побережье Атлантики, в частности, в Германии. Там имеются наилучшие условия - ровные и сильные ветра, оптимальные климатические показатели. Но основной причиной широкого распространения ВЭС именно в этом регионе стало отсутствие возможностей для строительства гидроэлектростанций, вынудившее правительства стран этого региона использовать доступные методы получения электроэнергии. При этом, имеются установки и в балтийском регионе, в Дании, Голландии.

Россия пока отстает в этом вопросе, за прошедшее десятилетие в эксплуатацию сдан едва ли десяток ВЭС. Причина такого отставания кроется в большом развитии гидроэнергетики и отсутствии должных условий для эксплуатации промышленных ветроэнергетических станций. Тем не менее, отмечается рост производства небольших установок, способных обеспечивать энергией отдельные усадьбы.

Факты и заблуждения

Малое распространение ветроэнергетических установок и отсутствие опыта общения с ними породили массу заблуждений относительно свойств и воздействия ВЭС на организм человека. Так, широко распространено мнение о необычайно высоком уровне шума, производимого работающим ветрогенератором. Действительно, определенный шум имеется, но его уровень гораздо ниже, чем принято считать. Так, шум от промышленных моделей на расстоянии 200-300 м воспринимается на слух так же, как звук от работающего бытового холодильника.

Другая проблема, которую необоснованно раздувают несведущие люди - создание непреодолимых помех радио и телевизионным сигналам. Этот вопрос был решен раньше, чем о нем узнали пользователи - каждый мощный промышленный ветряк снабжен качественным фильтром радиопомех, способным полностью исключить влияние устройства на эфир.

Люди, живущие поблизости от турбин, будут постоянно находиться в зоне мерцания тени. Это термин, обозначающий некомфортное ощущение от мигающих световых проявлений. Вращающиеся лопасти создают такой эффект, но его значение сильно преувеличено. Даже самые чувствительные люди всегда могут попросту отвернуться от турбины, если случилось оказаться поблизости от нее.

Существуют и другие, надуманные и вполне реально существующие факты, касающиеся работы ВЭС, их воздействия на организм человека и окружающую природу. Част из них является обычными слухами, другая часть настолько преувеличена, что не заслуживает даже обсуждения. Ветроэнергетика - полноценная отрасль, способная решать вопросы энергообеспечения как в солидных масштабах, так и в пределах маленького дачного домика.

Частные ветряные электростанции

Для России наиболее актуальным вопросом является распространение именно небольших станций, обеспечивающих один дом или усадьбу. Строительство крупных ВЭС в климатических условиях нашей страны нецелесообразно и нерентабельно. Самая большая ценность ветрогенераторов кроется в создании возможности обеспечить энергией отсталые или отдаленные населенные пункты, где нет сетевого подключения.

Для таких районов применение небольших частных станций является оптимальным способом решения вопроса, так как работа ветряка не требует обеспечения топливом, устройство несложно и свободно поддается ремонту. Обеспечить такие регионы дополнительным оборудованием намного проще и дешевле, чем выделять большие средства на проведение линии электропередач, особенно, если речь идет о гористой местности. Небольшие ветряки способны вырабатывать достаточное количество энергии, не нуждаясь в расходах на содержание или топливо, что делает их весьма перспективными и привлекательными вариантами решения проблемы.

Обзор цен на популярные модели

Стоимость ветрогенераторов высока. Этот момент является самым труднопреодолимым для распространения ветроэнергетических технологий. Многие владельцы домов с удовольствием установили бы у себя на участке ветряки, но не имеют средств на их приобретение. Установка, способная обеспечить освещение участка, стоит около 100 тыс руб.

Более мощная конструкция, позволяющая снабдить электроэнергией коттедж, обойдется в 250 тыс.

ВЭС, способная обеспечить небольшое фермерское хозяйство, стоит около 500 тыс руб. И это еще не предел. При таких ценах ожидать быстрого распространения ветрогенераторов не приходится, поэтому вся надежда на появление отечественных моделей, способных решить вопрос дороговизны оборудования. Как вариант, можно купить относительно недорогую китайскую модель. Такие устройства не поддаются ремонту, являясь, по сути, одноразовыми, но их цена намного ниже, чем стоимость аналогичных по мощности западных образцов.

Как сделать ветряную электростанцию?

Дороговизна промышленных моделей вынуждает людей, способных пользоваться инструментами и обладающих определенными познаниями, создавать самодельные ветряки. Расходы на такое устройство несравнимы с тратами на заводские модели, а эффект, полученный от самоделок, зачастую превосходит показатели прославленных зарубежных изделий.

Для изготовления станции понадобится:

  • комплект оборудования - контроллер заряда, инвертор, аккумулятор;
  • генератор, способный работать на низких скоростях. Чаще всего используется автомобильный или тракторный генераторы, прошедшие некоторую модернизацию;
  • ветряк - вращающийся ротор, установленный на мачте или основании нужных размеров.


Оборудование для станции может быть собрано самостоятельно или приобретено в готовом виде. Изготовление генератора из готового устройства занимает один день (если иметь представление о том, что надо делать). Ветряк делается из подручных материалов - металлических бочек, листового металла и т.п.

Все элементы конструкции собираются воедино, система запускается, производится оценка ее характеристик и, если надо, вносятся необходимые изменения. Ветряк, собранный своими руками, ремонтируется совершенно без проблем, так как вся его конструкция известна мастеру, что называется, до последнего винтика.

Эксплуатация ВЭС не требует особых расходов, все вложения делаются единовременно. Срок службы системы рассчитывается на 20 лет, но при изготовлении своими руками он практически не ограничен, поскольку в любое время возможна модернизация или ремонт конструкции.

Эта статья также доступна на следующих языках: Тайский

  • Next

    Огромное Вам СПАСИБО за очень полезную информацию в статье. Очень понятно все изложено. Чувствуется, что проделана большая работа по анализу работы магазина eBay

    • Спасибо вам и другим постоянным читателям моего блога. Без вас у меня не было бы достаточной мотивации, чтобы посвящать много времени ведению этого сайта. У меня мозги так устроены: люблю копнуть вглубь, систематизировать разрозненные данные, пробовать то, что раньше до меня никто не делал, либо не смотрел под таким углом зрения. Жаль, что только нашим соотечественникам из-за кризиса в России отнюдь не до шоппинга на eBay. Покупают на Алиэкспрессе из Китая, так как там в разы дешевле товары (часто в ущерб качеству). Но онлайн-аукционы eBay, Amazon, ETSY легко дадут китайцам фору по ассортименту брендовых вещей, винтажных вещей, ручной работы и разных этнических товаров.

      • Next

        В ваших статьях ценно именно ваше личное отношение и анализ темы. Вы этот блог не бросайте, я сюда часто заглядываю. Нас таких много должно быть. Мне на эл. почту пришло недавно предложение о том, что научат торговать на Амазоне и eBay. И я вспомнила про ваши подробные статьи об этих торг. площ. Перечитала все заново и сделала вывод, что курсы- это лохотрон. Сама на eBay еще ничего не покупала. Я не из России , а из Казахстана (г. Алматы). Но нам тоже лишних трат пока не надо. Желаю вам удачи и берегите себя в азиатских краях.

  • Еще приятно, что попытки eBay по руссификации интерфейса для пользователей из России и стран СНГ, начали приносить плоды. Ведь подавляющая часть граждан стран бывшего СССР не сильна познаниями иностранных языков. Английский язык знают не более 5% населения. Среди молодежи — побольше. Поэтому хотя бы интерфейс на русском языке — это большая помощь для онлайн-шоппинга на этой торговой площадке. Ебей не пошел по пути китайского собрата Алиэкспресс, где совершается машинный (очень корявый и непонятный, местами вызывающий смех) перевод описания товаров. Надеюсь, что на более продвинутом этапе развития искусственного интеллекта станет реальностью качественный машинный перевод с любого языка на любой за считанные доли секунды. Пока имеем вот что (профиль одного из продавцов на ебей с русским интерфейсом, но англоязычным описанием):
    https://uploads.disquscdn.com/images/7a52c9a89108b922159a4fad35de0ab0bee0c8804b9731f56d8a1dc659655d60.png